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Abstract. Is is known that a Banach space contains an isomorphic copy of c0 if,
and only if, it can be equivalently renormed to be almost square. We introduce and study
transfinite versions of almost square Banach spaces with the purpose of relating them
to the containment of isomorphic copies of c0(κ), where κ is some uncountable cardinal.
We also provide several examples and stability results for the above properties by taking
direct sums, tensor products and ultraproducts. By connecting the above properties with
transfinite analogues of the strong diameter 2 property and octahedral norms, we obtain
a solution to an open question of Ciaci et al. [Israel J. Math. (online, 2022)].

1. Introduction. Since the starting point of the study of Banach space
theory, a considerable effort has been made in order to determine how the
presence of an isomorphic copy of c0 or ℓ1 in a Banach space affects its
structure. This makes interesting the search of properties which characterise
the containment of the above-mentioned spaces. In this sense, let us indicate
two characterisations of the containment of the spaces ℓ1 and c0 of geometric
nature. In [14, Theorem II.4] it is proved that a Banach space X contains
an isomorphic copy of ℓ1 if, and only if, it admits an equivalent norm ||| · |||
which is octahedral, that is, given a finite-dimensional subspace Y ⊂ X and
ε > 0, there is an element x ∈ S(X,|||·|||) such that

|||y + rx||| ≥ (2− ε)(|||y|||+ |r|) for all y ∈ Y and r ∈ R.

Concerning the containment of c0, a more recent characterisation was given
in [8, Corollary 2.4]: a Banach space X contains an isomorphic copy of c0 if,
and only if, it admits an equivalent almost square (ASQ, for short) norm |||·|||,
that is, given a finite-dimensional subspace Y ⊂ X and ε > 0, there is an
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element x ∈ S(X,|||·|||) such that

|||y + rx||| ≤ (1 + ε)(|||y||| ∨ |r|) for all y ∈ Y and r ∈ R.

At this point, it is natural to look for geometric characterisations of the
containment of non-separable versions of ℓ1 and c0. In this spirit, as far as the
containment of ℓ1(κ) is concerned, transfinite generalisations of octahedral
norms were introduced in [9] in various directions and some characterisations
of the containment of ℓ1(κ) were obtained in [6, 9]. To mention the strongest
known result, it is proved in [6, Theorem 1.3] that a Banach space X contains
an isomorphic copy of ℓ1(κ), where κ is an uncountable cardinal, if, and
only if, there exists an equivalent norm ||| · ||| such that (X, ||| · |||) fails the
(−1)-ball covering property for cardinals < κ ((−1)-BCP<κ, for short), which
means that, given any subspace Y ⊂ X such that dens(Y ) < κ, there exists
x ∈ S(X,|||·|||) such that

|||y + rx||| = |||y|||+ |r| for all y ∈ Y and r ∈ R.

Motivated by the above results, in the present paper we aim to intro-
duce different transfinite versions of ASQ spaces in order to search for a
characterisation of those spaces that contain isomorphic copies of c0(κ).

Let us now describe in more detail the content of the paper. In Section 2
we define transfinite ASQ spaces and call them ASQ<κ spaces, where κ is
some fixed cardinal (see Definition 2.1(a)), and we provide many examples
of Banach spaces enjoying these properties. In Section 3 we consider the
relations between being ASQ<κ, admitting an equivalent ASQ<κ renorm-
ing and containing isomorphic copies of c0(κ). One of the highlights of this
section is Example 3.1, in which we find, for every uncountable cardinal κ,
a Banach space X which is ASQ<κ, but such that X∗ fails to contain ℓ1(ω1)
and, in particular, X cannot contain c0(ω1). This means that the property
of being renormable to become ASQ<κ is not strong enough to characterise
the Banach spaces that contain c0(κ) isomorphically. Hence, we consider a
strengthening of ASQ<κ that we call SQ<κ spaces (see Definition 2.1(b))
and which will contain isomorphic copies of c0(κ). Therefore we face the
question whether every Banach space containing c0(κ), for some uncount-
able cardinal κ, admits an equivalent SQ<κ renorming. Even though we do
not know the answer in complete generality, we prove in Theorem 3.7 that, if
dens(X) = κ, then X admits an equivalent SQ<cf(κ) renorming, where cf(κ)
stands for the cofinality of κ.

In Section 4 we study various stability results for (A)SQ<κ spaces under
different operations on Banach spaces, in order to enlarge the class of the
known examples of Banach spaces enjoying these properties. We mainly ex-
tend known results to ASQ spaces, but which, in their transfinite version,
produce new surprising results. For instance, with respect to absolute sums,
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in Theorem 4.1 we are able to produce ℓ∞-sums of spaces which are ASQ<κ

even though none of their components is ASQ<κ, which is a notable differ-
ence from the previously known results for finite sums of ASQ spaces. We
also analyse (A)SQ<κ properties with respect to taking spaces of operators
and tensor products. In Corollary 4.7 we prove that, if X is (A)SQ<κ and
Y is non-trivial, then the injective tensor product X ⊗̂ε Y is (A)SQ<κ. If
we also require Y being (A)SQ<κ, then so is its projective tensor product
X ⊗̂π Y (see Proposition 4.4). Observe that the latter result is important,
because most of the known examples of ASQ spaces come from some kind
of ∞-norm, but the projective norm on a tensor product has dramatically
different behaviour.

We end the study of stability results with ultraproducts, which, as one
might expect, provide a lot of examples of SQ<κ spaces. Indeed, in Propo-
sition 4.8 we prove that, if a family {Xα : α ∈ A} consists of ASQ<κ spaces
and if we consider a countable incomplete ultrafilter U , then the ultraprod-
uct (Xα)U is SQ<κ. Lastly, we show in Example 4.9 that the requirement of
the factors being ASQ<κ is not necessary.

In Section 5 we investigate the connection of (A)SQ<κ properties with
other properties of Banach spaces, such as the transfinite versions of oc-
tahedrality and diameter 2 properties. From our work we derive that if X
is ASQ<κ (respectively, SQ<κ), then X has the SD2P<κ (respectively, the
1-ASD2P<κ), and consequently, X∗ is <κ-octahedral (respectively, fails the
(−1)-BCP<κ) (see Proposition 5.4). As a consequence, in Remark 5.5 we
provide, for every uncountable cardinal κ, an example of a Banach space X
which is<κ-octahedral but which fails to contain an isomorphic copy of ℓ1(ω1),
giving a negative solution to [9, Question 1].

In Section 6 we introduce a parametric version of (A)SQ<κ spaces (see
Definition 6.1) which includes all of the known versions of ASQ spaces. More-
over, we improve the known isomorphic characterisation of Banach spaces
containing c0 (see Theorem 6.8).

Terminology. Throughout the paper we only consider real Banach
spaces. Given a Banach space X, we denote the closed unit ball and the
unit sphere of X by BX and SX , respectively. We denote by X∗ the topo-
logical dual of X. Given two Banach spaces X and Y we denote by L(X,Y )
the space of linear bounded operators from X into Y . Given a subset A of X
we denote by span(A) (respectively, span(A)) the linear span (respectively,
the closed linear span) of A, whereas dens(X) denotes the density character
of a topological space X, i.e. the smallest cardinality of a dense set in X.

Given a set A, we denote by |A| its cardinality and by Pκ(A) and P<κ(A)
the sets of all subsets of A of cardinality at most κ and strictly less than κ,
respectively, for some cardinal κ. We denote by N≥2 the set {n ∈ N : n ≥ 2}.
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Given a cardinal κ, we denote by cf(κ) its cofinality, which is the small-
est cardinal λ such that κ can be expressed as a union of λ many sets of
cardinality strictly smaller than κ. We use c to denote the cardinality of the
continuum.

Given an infinite set A and an uncountable cardinal κ, a non-principal
ultrafilter U over A is said to be κ-complete if it closed with respect to < κ
many intersections. It is immediate to see that a non-principal ultrafilter U
is ℵ1-incomplete if, and only if, there is a function f : A → R such that
f(α) > 0 for every α ∈ A and limU f(α) = 0.

We refer the reader to [20] for background on set theory and cardinals.
We use the standard notation for lattices: x ∨ y denotes the supremum

of elements x and y and
∨
A denotes the supremum of a set A.

2. Transfinite almost square Banach spaces and first examples.
Let us begin with the definition of an (A)SQ Banach space depending on a
given cardinal κ.

Definition 2.1. Let X be a Banach space and κ a cardinal.

(a) We say that X is <κ-almost square (ASQ<κ, for short) if, for every set
A ∈ P<κ(SX) and ε > 0, there exists y ∈ SX such that ∥x± y∥ ≤ 1 + ε
for all x ∈ A,

(b) We say that X is <κ-square (SQ<κ, for short) if, for every set A ∈
P<κ(SX), there exists y ∈ SX such that ∥x± y∥ ≤ 1 for all x ∈ A.

As a special case, let us also define ASQκ and SQκ spaces by considering
A ∈ Pκ(SX) instead.

Notice that, if κ is infinite, then we can equivalently require just that
∥x+ y∥ ≤ 1+ ε. Moreover, a standard argument shows that for the SQ case
it is equivalent to require that ∥x± y∥ = 1.

It is known that a Banach space X is ASQ if, and only if, for every
finite-dimensional subspace Y ⊂ X and ε > 0, there is x ∈ SX such that

∥y + rx∥ ≤ (1 + ε)(∥y∥ ∨ |r|) for all y ∈ Y and r ∈ R

(see [2, Proposition 2.1]). Even more is true: a straightforward application of
[2, Lemma 2.2] provides a description of the above notions via subspaces of
density < κ whenever κ is uncountable. The version for κ = ℵ0 is unknown
to the authors.

Proposition 2.2. Let X be a Banach space and κ an uncountable car-
dinal. The following are equivalent:

(i) X is ASQ<κ (respectively, SQ<κ).
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(ii) For every subspace Y ⊂ X with dens(Y ) < κ and ε > 0 (respectively,
ε ≥ 0), there exists x ∈ SX such that

∥y + rx∥ ≤ (1 + ε)(∥y∥ ∨ |r|) for every y ∈ Y and every r ∈ R.

We devote the rest of the section to various examples of transfinite (A)SQ
spaces.

Example 2.3. Let κ be an uncountable cardinal, and let ℓc∞(κ) be the
elements of ℓ∞(κ) whose support is at most countable. If X is a subspace
of ℓc∞(κ) containing c0(κ), then X is SQ<κ. Indeed, fix A ∈ P<κ(SX). Since
supp(f) ⊆ κ is at most countable for every f ∈ A, we can find λ ∈ κ such
that λ /∈

⋃
f∈A supp(f). Clearly ∥f + eλ∥ = 1 for every f ∈ A.

Example 2.4. Fix a non-principal ultrafilter U in N. For every x ∈ ℓ∞,
denote by lim(x) the limit of x(n) with respect to U and define the norm

|||x||| := |lim(x)| ∨
∨
n∈N

|x(n)− lim(x)|.

The Banach space X := (ℓ∞, ||| · |||) was defined in [8] and proved to be ASQ.
In the following we prove that it actually is SQ<ℵ0

. Nevertheless, X cannot
be ASQℵ0 (see Theorem 3.3) since ℓ∞ = C(βN).

Fix x1, . . . , xk ∈ SX and define, for every n ∈ N and m ∈ {1, . . . , k},
An,m := {p ∈ N : |xm(p)− lim(xm)| < 1/n}.

By the definition of ultralimit, An,m ∈ U , therefore An :=
⋂k

m=1An,m ∈ U
for every n ∈ N. Since U is non-principal, each An is infinite, hence, for every
n ∈ N, we can find f(n) ∈ An such that f(n) < f(n+ 1). Notice that, since
∅ /∈ U , either f(2N) or f(2N + 1) is not in U , say f(2N) /∈ U . Define the
formal series

y :=
∑
n∈2N

(1− 1/n)ef(n) ∈ ℓ∞.

Notice that ∥y∥∞ = 1 and lim(y) = 0, so y ∈ SX . For every i ∈ {1, . . . , k},
notice that

|||xi + y||| = |lim(xi)| ∨
∨
n∈N

|xi(n)− lim(xi) + y(n)|

≤ 1 ∨
∨

n∈2N
|xi(f(n))− lim(xi) + (1− 1/n)| ∨

∨
n∈N\f(2N)

|xi(n)− lim(xi)|

≤ 1 ∨ (1− 1/n+ 1/n) ∨ 1 = 1.

Therefore X is SQ<ℵ0
.

The previous example yields a non-separable example of an SQ<ℵ0
space.

A natural question at this point is whether or not there is a separable Banach
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space which is SQ<ℵ0
. The next example is a modification of [2, Example 6.4]

and provides an affirmative answer.
Example 2.5. Given n ∈ N, consider

Xn := {f ∈ C(SRn) : f(s) = −f(−s) for all s ∈ SRn}.
Let us show that Xn is SQn. Fix f1, . . . , fn ∈ SXn . By a corollary of the
Borsuk–Ulam theorem [4, p. 485, Satz VIII], we can find s0 ∈ SRn such that
fi(s0) = 0 for every i ∈ {1, . . . , n}. Pick any function h ∈ SXn such that
h(s0) = 1 and define

g(s) :=
(
1−

n∨
i=1

|fi(s)|
)
h(s).

Notice that g ∈ Xn and that g(s0) = 1, therefore ∥g∥ = 1. For every i ∈
{1, . . . , n} and s ∈ SRn we have

|fi(s)± g(s)| ≤ |fi(s)|+ |g(s)| ≤ |fi(s)|+ 1−
n∨

j=1

|fj(s)| ≤ 1,

as required.
Now define X := c0(N, Xn). It is obvious that X is separable. Moreover,

since Xn is SQn for every n ∈ N, it is immediate to check that X is SQ<ℵ0 . In
fact, fix x1, . . . , xk∈SX and without loss of generality assume that ∥xi(k)∥=1
for all i ∈ {1, . . . , k}. Find y ∈ SXk

such that ∥xi(k) + y∥ ≤ 1 for all
i ∈ {1, . . . , k}, therefore ∥xi + y · ek∥ ≤ 1.

In [15], spaces of (almost) universal disposition were introduced. Let us
recall their definitions. Given a family K of Banach spaces, a Banach space X
is of almost universal disposition for K if, for every S ⊂ T in K, any isometric
embedding f : S → X extends to an ε-isometric embedding F : T → X.
Moreover, a Banach space X is of universal disposition for K if for every
S ⊂ T in K, any isometric embedding f : S → X extends to an isometric
embedding F : T → X.

The Gurarĭı space is the classical example of a space of almost universal
disposition for finite-dimensional spaces. We refer to [5] for more examples
and further discussion of this kind of properties.

Example 2.6. If X is of almost universal disposition (respectively, of
universal disposition) for Banach spaces with density character strictly less
then κ, then X is ASQ<κ (respectively, SQ<κ). We show the claim for the
ASQ case only. Fix a subspace Y ⊂ X with dens(Y ) < κ and ε > 0. The
inclusion Y → X extends to an ε-isometrical embedding T : Y ⊕∞ R → X.
Find r ∈ R such that ∥T (0, r)∥ = 1. We can do so since T is injective and,
by picking any s ̸= 0, we can set r := s/T (0, s). Notice that

|r| = ∥(0, r)∥∞ ≤ (1 + ε)∥T (0, r)∥ = 1 + ε.
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It is clear that, for every y ∈ SY ,

∥y + T (0, r)∥ ≤ (1 + ε)∥(y, 0) + (0, r)∥∞ = (1 + ε)(∥y∥ ∨ |r|) ≤ (1 + ε)2.

In the following we study C0(X) spaces. It is known that, given a locally
compact Hausdorff space X, C0(X) is ASQ if, and only if, X is non-compact
[7, Proposition 2.1]. Below we provide a topological description of X such
that C0(X) is ASQ<κ whenever κ is uncountable, and as a byproduct, we
find that being SQ<κ and ASQ<κ are equivalent in C0(X) spaces, at least
under a mild regularity assumption on X.

Theorem 2.7. Let X be a T4 locally compact space. If κ is an uncount-
able cardinal, then the following are equivalent:

(i) C0(X) is SQ<κ,
(ii) C0(X) is ASQ<κ,
(iii) if K ∈ P<κ(P(X)) is a family consisting of compact sets in X, then⋃

K is not dense in X.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii). Fix a family K ∈ P<κ(P(X)) consisting of compact sets in X

and fix any K ∈ K. Since K is compact and X is locally compact, we can
find a covering U1, . . . , Un for K consisting of open relatively compact sets.
Define U :=

⋃n
i=1 Ui and notice that X \ U ̸= ∅, otherwise we would get

X = U , which is compact, and this would contradict the fact that C0(X)
is ASQ<κ. On the other hand, it is clear that K and X \ U are disjoint
closed sets, therefore, since X is normal, there exists an Urysohn function
fK : X → [0, 1] such that fK |K = 1 and fK |X\U = 0. Notice that the
support of fK is contained in U , which is compact, thus fK ∈ SC0(X). Since
C0(X) is ASQ<κ, there is g ∈ SC0(X) satisfying

∥fK ± g∥∞ ≤ 3/2 for every K ∈ K.

It is clear by construction that |g(x)| ≤ 1/2 for every x ∈
⋃
K. Therefore

the non-empty open set {x ∈ X : |g(x)| > 1/2} is disjoint from
⋃
K, hence⋃

K is not dense in X.
(iii)⇒(i). Fix A ∈ P<κ(SC0(X)). For every f ∈ A and n ∈ N, there exists

a compact set Kf,n ⊂ X such that |f(x)| < 1/n for every x ∈ X \ Kf,n.
Define K := {Kf,n : f ∈ A and n ∈ N} and notice that |K| ≤ |A| · ℵ0 < κ
since κ is uncountable. By assumption we can find a non-empty open set U
which is disjoint from

⋃
K and, without loss of generality, we can assume it

is relatively compact. Since X is normal, there exists an Urysohn function
g : X → [0, 1] such that ∥g∥∞ = 1 and g|X\U = 0. Notice that the support
of g is contained in U , which is compact, thus g ∈ SC0(X). It is clear by
construction that ∥f + g∥∞ = 1 for every f ∈ A.
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A closer look at the proof of Theorem 2.7 reveals that (ii)⇔(iii) actually
holds without the assumption that κ is uncountable. This corresponds to the
already recalled result that C0(X) is ASQ if, and only if, X is non-compact.

Let us note that in the case κ = ℵ1, property (iii) of Theorem 2.7 can be
stated as “X does not admit a dense sigma-compact set”.

3. Banach spaces which admit transfinite ASQ renorming. Let
X be a Banach space. In this section we will analyse the relations between
the following properties:

(a) X admits an equivalent ASQ<κ renorming,
(b) X admits an equivalent SQ<κ renorming,
(c) X contains an isomorphic copy of c0(κ).

Observe that an easy transfinite induction argument reveals that, if X
admits an equivalent SQ<κ renorming, then X contains an isomorphic copy
of c0(κ). The situation is dramatically different if we replace the SQ norm
with an ASQ norm, as we can see in the next example.

We denote

ℓp(κ) :=
{
x : κ → R : ∥x∥ :=

(∑
η<κ

|x(η)|p
)1/p

< ∞
}

and

c0(N≥2, ℓn(κ)) :=
{
x : Nn≥2 →

∏
n

ℓn(κ) : x(n)∈ℓn(κ) and lim
n

∥x(n)∥ = 0
}

endowed with the norm ∥x∥ =
∨

n ∥x(n)∥.

Example 3.1. Let κ be an infinite cardinal. Then X := c0(N≥2, ℓn(κ)) is
ASQ<κ but X∗ does not contain any isomorphic copy of ℓ1(ω1); in particular,
X does not contain any isomorphic copy of c0(ω1).

Proof. Let us initially suppose that κ > ℵ0. In order to prove that X
is ASQ<κ, it is enough to note that, for every set A ∈ P<κ(Sℓn(κ)), there
is y ∈ Sℓn(κ) such that ∥x + y∥ ≤ 21/n for all x ∈ A; call this property
(2−1/n, 2−1/n)-SQ<κ. Indeed, since every x ∈ A has countable support, we
can find λ ∈ κ such that x(λ) = 0 for all x ∈ A. Take y defined by y(µ) = δλµ.
Now ∥x + y∥ = (∥x∥n + ∥y∥n)1/n = 21/n for all x ∈ A, as required. To
conclude, fix A ∈ P<κ(SX) and ε > 0. Find n ∈ N such that 21/n < 1 + ε
and find y ∈ Sℓn(κ) such that ∥x(n)+y∥ ≤ 21/n for all x ∈ A; then ∥x+y ·en∥
≤ 1 + ε.

If κ = ℵ0, the proof is similar, but, for every ε > 0, we can only manage
to find y such that ∥x+ y∥ ≤ (2+ ε)1/n, which is still enough. Indeed, given
a finite set A ⊂ Sℓn , we can find m ∈ N such that |x(m)| < δ for all x ∈ A,
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where δ > 0 is chosen such that (1+ δ)n < 1+ ε, thus we only need to define
y := em.

In order to prove the second part, observe that X∗ = ℓ1(N≥2, ℓn∗(κ))
where n∗ is the conjugate index of n. Since X∗ is a countable sum of re-
flexive Banach spaces, we deduce that X∗ is weakly compactly generated.
Consequently, X∗ cannot contain ℓ1(ω1), which even fails to have weaker
properties (e.g., by using [11, Theorem 12.42] it is immediate to see that
ℓ1(ω1) fails the Corson property (C), which is inherited by closed subspaces).

Finally, to conclude that X does not contain c0(ω1), observe that if X
contained c0(ω1), then taking adjoints we would see that ℓ1(ω1) would be
isomorphic to a quotient of X∗. Since ℓ1(ω1) has the lifting property, we
would conclude that ℓ1(ω1) is isomorphic to a subspace of X∗, which entails
a contradiction with the previous point.

Remark 3.2. The same proof as in Example 3.1 shows that ℓ∞(N≥2, ℓn(κ))
is also ASQ<κ. In more detail, using the terminology from Example 3.1, since
each ℓn(κ) is (2−1/n, 2−1/n)-SQ<κ (see Definition 6.1), the claim follows from
a direct computation or from Theorem 4.1. This proves that, for every infinite
cardinal κ, there are dual (actually bidual) Banach spaces which are ASQ<κ.
Let us point out that the importance of this result is that, for classical ASQ
spaces, it was asked in [2] whether there is any dual ASQ space, which was
answered in the affirmative in [1].

Observe that the situation for SQ spaces is different, because they are
clearly incompatible with the existence of extreme points in the unit ball, so
no dual Banach space can enjoy any SQ property.

We have seen that the ASQ<κ condition does not imply the contain-
ment of large copies of c0. However, this behaviour is impossible in spaces of
continuous functions, as the following theorem shows.

Theorem 3.3. Let K be a compact Hausdorff topological space. If C(K)
admits any equivalent ASQ<κ norm, then it contains an isomorphic copy
of c0(κ).

Proof. Set X := C(K) and assume that
1

M
∥f∥ ≤ |||f ||| ≤ M∥f∥ for every f ∈ X.

Find p ∈ N large enough and ε > 0 small enough so that p > 2M2(1+ε)p. If
(X, ||| · |||) is ASQ<κ then, by transfinite induction, we can find {fα : α < κ}
⊆ S(X,|||·|||) such that

|||f + rfα||| ≤ (1 + ε)(|||f ||| ∨ |r|) for every f ∈ span {fβ : β < α} and r ∈ R.

Note that ∥fα∥ ≥ 1/M . Up to considering −fα instead, we can assume that
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the set

Vα :=

{
x ∈ K : fα(x) >

1

2M

}
is non-empty, and it is clearly open. Suppose for contradiction that c0(κ) does
not embed in C(K); we then infer that K satisfies the κ-chain condition [25,
p. 227]. By [25, p. 227, Remark], since {Vα : α < κ} is a family of open sets
in K, we can find an infinite set {αn : n ∈ N} ⊆ [0, κ) such that there exists
x ∈

⋂
n∈N Vαn . Eventually,

(1 + ε)p >

∣∣∣∣∣∣∣∣∣∣∣∣ p∑
i=1

fi

∣∣∣∣∣∣∣∣∣∣∣∣ ≥ 1

M

∥∥∥∥ p∑
i=1

fi

∥∥∥∥ ≥ 1

M

p∑
i=1

fi(x) ≥
p

2M2
,

which is a contradiction.

Now it is time to analyse the following question.

Problem 3.4. Let κ be an infinite cardinal. If a Banach space contains
an isomorphic copy of c0(κ), does it admit an equivalent SQ<κ renorming?

We do not know the answer to the above question in complete generality.
However, we are able to give some partial positive answers. The first one
deals with Banach spaces that contain c0.

Proposition 3.5. If X is a dual Banach space containing an isomorphic
copy of c0, then X admits an equivalent SQ<ℵ0

renorming.

Proof. If X is a dual Banach space containing c0, then X contains an
isomorphic copy of ℓ∞ [23, Proposition 2.e.8]. Because of its injectivity, ℓ∞ is
complemented in X (cf. e.g. [11, Proposition 5.13]). Consequently, there is
a subspace Z of X such that X = ℓ∞ ⊕ Z. Consider the norm ||| · ||| on ℓ∞
described in Example 2.4. Now, consider on X the equivalent norm such that
X = (ℓ∞, ||| · |||)⊕∞ Z. Then X, endowed with this norm, is SQ<ℵ0

, because
(ℓ∞, ||| · |||) is SQ<ℵ0

by applying Corollary 4.2 below.

We do not know whether c0 has an equivalent SQ<ℵ0
renorming and,

when κ > ℵ0, we do not know if ℓ∞(κ) has an equivalent SQ<κ renorming.
The best we can say in this direction is the following.

Proposition 3.6. Let κ and λ be uncountable cardinals. If there ex-
ists a κ-complete ultrafilter U on λ, then ℓ∞(λ) admits an equivalent SQ<κ

renorming.

Proof. Define an equivalent norm by the same formula as in Example 2.4:

|||x||| := |lim(x)| ∨
∨
µ∈λ

|x(µ)− lim(x)|,
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where lim(x) denotes the limit through the ultrafilter U . As before, if we
take X ∈ P<κ(Sℓ∞(λ)), then

An,x = {µ ∈ λ : |x(µ)− lim(x)| < 1/n} ∈ U for all n ∈ N and x ∈ X.

So A := {µ ∈ λ : x(µ) = lim(x)} =
⋂

n,xAn,x ∈ U . If we take µ ∈ A, then it
is easily checked that |||x+ eµ||| = 1 for all x ∈ X.

This statement is quite unsatisfactory because λ must be a large cardinal,
at least the first measurable cardinal. Using a variation of this idea by taking
multiple ultrafilters instead of just a fixed one, we obtain another general
result which says that, when X contains c0(κ) and when X/c0(κ) is small in
a sense, then X admits an equivalent SQ<κ norm. This is the main result of
this section.

Theorem 3.7. Let κ be an infinite cardinal of uncountable cofinality. If
a Banach space of density character κ contains an isomorphic copy of c0(κ),
then it admits an equivalent SQ<cf(κ) renorming.

Proof. Without loss of generality we can suppose that the copy of c0(κ) is
isometric. Let Y ⊂ X be a subspace together with an isometric isomorphism
S : Y → c0(κ). By Hahn–Banach, there exists a norm-1 operator T : X →
ℓ∞(κ) such that T |Y = S.

Now we aim to define a suitable one-to-one mapping g : κ → BX∗ such
that all g(α)’s vanish on Y . After doing so, we define the equivalent norm

|||x||| := ∥x∥X/Y ∨
∨
α<κ

|Tα(x)− g(α)(x)|

First step: ||| · ||| defines an equivalent norm on X.
In fact, it is clear that ||| · ||| is a norm and that ||| · ||| ≤ 2∥ · ∥. Now sup-

pose for contradiction that we cannot obtain the opposite inequality with
respect to any fixed constant; then we can find a sequence (xn)n∈N ⊂ SX

satisfying limn |||xn||| = 0. This implies that limn ∥xn∥X/Y = 0, so we can find
elements yn ∈ Y such that limn ∥xn − yn∥ = 0. This, as before, shows that
limn |||xn − yn||| = 0.

Since limn |||xn||| = 0, we conclude that limn |||yn||| = 0, but, as yn ∈ Y , we
get |||yn||| =

∨
α<κ |Tα(yn)| = ∥yn∥, hence limn ∥yn∥ = 0. This, together with

limn ∥xn − yn∥ = 0, implies that limn ∥xn∥ = 0, which is a contradiction.

Second step: If Tβ(x) = g(β)(x), then |||x+ tS−1(eβ)||| = |||x||| ∨ |t|.
In fact, set uβ := S−1(eβ) and observe that

|||x||| = ∥x∥X/Y ∨
∨
α ̸=β

|Tα(x)− g(α)(x)|.

By the fact that g(β)(uβ) = 0, we deduce that

|Tβ(x+ tuβ)− g(β)(x+ tuβ)| = |t|.
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Notice also that Tα(uβ) = g(α)(uβ) = 0. Therefore

|||x+ tuβ||| = ∥x∥X/Y ∨|Tβ(x+ tuβ)−g(β)(x+ tuβ)|∨
∨
α ̸=β

|Tα(x)−g(α)(x)|

= |||x|||∨|t|.

Third step: If Z ⊂ X is a subspace with dens(Z) < κ, then, for all
α ∈ κ, except for < κ many α’s, there exist functionals gα ∈ BX∗ that
vanish on Y and are such that Tα(x) = gα(x) for all x ∈ Z.

In fact, consider the continuous function ϕ : βκ → BZ∗ given by

ϕ(U)(z) = lim
U

Tγ(z),

where the limit is taken with respect to γ, and the topology on BZ∗ is the
weak∗ topology. Notice that, for α < κ, if a non-principal ultrafilter Uα in κ
satisfies ϕ(Uα) = ϕ(α), then gα := limUα Tγ satisfies the desired conditions.
So it is enough to show that for all but less than κ many α < κ such a non-
principal ultrafilter exists. Suppose for contradiction that this is not the case.
Then there is a set A ⊂ κ of cardinality κ such that ϕ−1{ϕ(α)} contains no
non-principal ultrafilters for all α ∈ A. This means that ϕ−1{ϕ(α)} consists
only of isolated points of βκ, but it is also a compact set by continuity. Hence
each set ϕ−1{ϕ(α)} is finite, for α ∈ A. This implies that {ϕ(α) : α ∈ A}
has cardinality κ. Now we prove that each point ϕ(α) is an isolated point of
the range ϕ(βκ) ⊂ BZ∗ . This is a contradiction with the fact that BZ∗ has
weight less than κ since Z had density less than κ. So suppose that ϕ(α) is
not isolated in that range. Since κ is dense in βκ, we must have

ϕ(α) ∈ {ϕ(β) : β < κ, ϕ(β) ̸= ϕ(α)}.

Consider

F =
{
B ⊂ κ : ∃W neighbourhood of ϕ(α) with κ∩ ϕ−1(W \ {ϕ(α)}) ⊂ B

}
.

This is a filter of subsets of κ that contains all complements of finite sets,
and satisfies {ϕ(α)} =

⋂
B∈F ϕ(B). There is a non-principal ultrafilter U

on κ that contains F , and we have

ϕ(U) = ϕ
(
lim
U

β
)
= lim

U
ϕ(β) = ϕ(α).

This contradicts ϕ−1{α} containing no non-principal ultrafilter.

Fourth step: Definition of the map g : κ → BX∗ .
Let {Xγ : γ < cf(κ)} be a family consisting of subspaces of X of density

character strictly less than κ such that every subspace of X with density
character strictly less than cf(κ) is contained in some Xγ . Using the previous
step, for each γ < cf(κ), we can inductively choose α(γ) < κ and gγ ∈ BX∗

such that gγ vanishes on Y , Tα(γ)|Xγ = gα(γ)|Xγ and α(γ′) ̸= α(γ) for γ′ < γ.
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It is now legitimate to define

g(α) :=

{
gα(γ) if α = α(γ) for some γ < cf(κ),
0 if α ̸∈ {α(γ) : γ < cf(κ)}.

Finally, we can conclude the proof of the theorem. For this purpose, fix a
subspace Z ⊂ X with dens(Z) < cf(κ) and find γ < cf(κ) such that Z ⊂ Xγ .
By construction, Tα(γ)(x) = gα(γ)(x) for all x ∈ Xγ . By the second step, we
can find an element y ∈ S(X,|||·|||) such that |||x+ ty||| ≤ |||x||| ∨ |t| for all x ∈ Xγ

and t ∈ R.

As an application of the above results we get the following.

Corollary 3.8. ℓ∞/c0 admits an SQ<cf(c) equivalent norm, and in par-
ticular, an SQℵ0 equivalent norm.

Proof. ℓ∞/c0 contains a subspace isometric to c0(c), coming from an
almost disjoint family of cardinality c, and cf(c) > ℵ0.

4. Stability results. In this section we aim to produce more examples
of Banach spaces which are transfinite (A)SQ, by taking direct sums, tensor
products and ultrapowers of Banach spaces.

4.1. Direct sums. It is known that the only possible sums which may
preserve ASQ are the c0- and the ℓ∞-sums [16, Theorem 3.1]. Because of
that, we will only focus on these two cases.

Given a family of Banach spaces {Xα : α ∈ A}, we denote

ℓ∞(A, Xα) :=
{
f : A →

∏
α∈A

Xα : f(α) ∈ Xα ∀α and
∨
α∈A

∥f(α)∥ < ∞
}
.

Theorem 4.1. Let {Xα : α ∈ A} be a family of Banach spaces and κ an
infinite cardinal. If, for every ε > 0, there exists β ∈ A such that, for every
set A ∈ Pκ(SXβ

), there is y ∈ SXβ
satisfying

∥x+ y∥ ≤ 1 + ε for all x ∈ A,

then ℓ∞(A, Xα) is ASQ<κ. Moreover, if |A| < cf(κ) and λ|A| < κ for every
cardinal λ < κ, then the converse holds too.

Proof. Fix A ∈ P<κ(Sℓ∞(A,Xα)) and ε > 0. Find β ∈ A as in the assump-
tion. Then there exists y ∈ SXβ

satisfying

∥x(β) + y∥ ≤ (1 + ε)(∥x(β)∥ ∨ 1) = 1 + ε for all x ∈ A.

We conclude that

∥x+ y · eβ∥∞ =
∨

α∈A\{β}

∥x(α)∥ ∨ ∥x(β) + y∥ ≤ 1 ∨ (1 + ε) = 1 + ε

for every x ∈ A. Hence ℓ∞(A, Xα) is ASQ<κ.



14 A. Avilés et al.

For the “moreover” part, suppose that ℓ∞(A, Xα) is ASQ<κ and, for
contradiction, that there exists ε > 0 such that for every α ∈ A there exists
a set Aα ∈ P<κ(SXα) such that for every y ∈ SXα there is x ∈ Aα satisfying

either ∥x+ y∥ > 1 + ε or ∥x− y∥ > 1 + ε.

Notice that ∣∣∣∏
α∈A

Aα

∣∣∣ ≤ (
sup
α∈A

|Aα|
)|A|

< κ,

where the last inequality follows from observing that supα∈A |Aα| < κ since
|A| < cf(κ) and λ|A| < κ by hypothesis for every cardinal λ < κ. Since
ℓ∞(A, Xα) is ASQ<κ, we can find y ∈ Sℓ∞(Xα) such that

∥x+ y∥∞ ≤ 1 + ε/2 for every x ∈
∏
α∈A

Aα.

Find β ∈ A with ∥y(β)∥ ≥ 1− ε/2. Then, for every x ∈
∏

α∈AAα, we get

1 + ε/2 ≥ ∥x+ y∥∞ ≥ ∥x(β) + y(β)∥

≥
∥∥∥∥x(β) + y(β)

∥y(β)∥

∥∥∥∥−
∥∥∥∥y(β)− y(β)

∥y(β)∥

∥∥∥∥ ≥
∥∥∥∥x(β) + y(β)

∥y(β)∥

∥∥∥∥− ε/2.

This implies that
∥∥x(β)+y(β)/∥y(β)∥

∥∥ ≤ 1+ε, which is a clear contradiction
since this holds for every x(β) ∈ Aβ .

The following consequence of Theorem 4.1 was used in the proof of Propo-
sition 3.5.

Corollary 4.2. Let X and Y be Banach spaces and κ an infinite car-
dinal. Then X ⊕∞ Y is (A)SQ<κ if, and only if, either X or Y is (A)SQ<κ.

Proof. Notice that, with the notation from the statement of Theorem 4.1,
|A| = 2 < cf(κ) and that λ|A| = λ · λ = λ < κ for every λ < κ. Therefore we
can apply both directions of Theorem 4.1, hence the ASQ case follows. For
the SQ case, notice that the first half of the proof of Theorem 4.1 holds also
if we choose ε = 0. Moreover, the second half of the proof of Theorem 4.1
holds for ε = 0 too if A is finite.

Given a family of Banach spaces {Xα : α ∈ A}, we denote

c0(A, Xα) :=
{
f ∈ ℓ∞(A, Xα) : (∀ε > 0) |{α ∈ A : |f(α)| ≥ ε}| is finite

}
.

It is known that, given any sequence {Xn : n ∈ N} of Banach spaces,
the Banach space c0(N, Xn) is always ASQ [2, Example 3.1]. A transfinite
generalisation of this result is the following.

Proposition 4.3. Let {Xα : α ∈ A} be an uncountable family of Banach
spaces. Then the Banach space c0(A, Xα) is SQ<|A|.
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Proof. Fix A ∈ P<|A|(Sc0(A,Xα)). For every x ∈ A, supp(x) is at most
countable; therefore, since A is uncountable,∣∣∣⋃

x∈A
supp(x)

∣∣∣ ≤ |A| · ℵ0 < |A|.

Find some β ∈ A \
⋃

x∈A supp(x) and notice that ∥x + eβ∥ = 1 for every
x ∈ A.

4.2. Tensor products. In this subsection we give examples of projective
and injective tensor products of Banach spaces which are transfinite (A)SQ.
Our motivation for this is the known stability results of regular ASQ by
taking tensor products coming from [21, 26]. By doing this, we are enlarging
the class of (A)SQ spaces.

Let us begin with the projective tensor product, which we briefly recall.
Recall that, given two Banach spaces X and Y , the projective tensor product
of X and Y , denoted by X ⊗̂π Y , is the completion of X⊗Y under the norm
given by

∥u∥ := inf
{ n∑

i=1

∥xi∥ ∥yi∥ : u =
n∑

i=1

xi ⊗ yi

}
.

It is known that BX⊗̂πY
= co(BX ⊗ BY ) = co(SX ⊗ SY ) [27, Proposi-

tion 2.2]. Moreover, it is well known that (X ⊗̂π Y )∗ = L(X,Y ∗) (see [27]
for background on tensor products).

In [26, Theorem 2.1], it was proved that, if X and Y are ASQ, then X⊗̂πY
is ASQ. The proof is based on averaging techniques in Banach spaces. In the
following result we will obtain a transfinite version, which will give us more
examples of transfinite (A)SQ spaces.

Let us stress that both X and Y are assumed to be (A)SQ<κ.

Proposition 4.4. Let κ be an uncountable cardinal. If X and Y are
(A)SQ<κ, then X ⊗̂π Y is (A)SQ<κ.

Proof. We prove the ASQ case only, the other is similar. To this end, let
A ∈ P<κ(SX⊗̂πY

) and ε > 0. Since SX⊗̂πY
= co(SX ⊗ SY ), for every u ∈ A

and n ∈ N we can find mn ∈ N, λu,n
i ≥ 0, xu,ni ∈ SX and yu,ni ∈ SY for

i ∈ {1, . . . ,mn} such that∥∥∥u−
mn∑
i=1

λu,n
i xu,ni ⊗ yu,ni

∥∥∥ ≤ 1/n and
mn∑
i=1

λu,n
i = 1.

Since κ is uncountable, the sets {xu,ni : u ∈ A, n ∈ N and i ∈ {1, . . . ,mn}}
and {yu,ni : u ∈ A, n ∈ N and i ∈ {1, . . . ,mn}} have cardinality < κ,
therefore we can find x ∈ SX and y ∈ SY satisfying

∥xu,ni + x∥ ≤ (1 + ε)1/2 and ∥yu,ni + y∥ ≤ (1 + ε)1/2
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for all u ∈ A, n ∈ N and i ∈ {1, . . . ,mn}. Thanks to [26, Lemma 2.2],
∥xu,ni ⊗ yu,ni + x⊗ y∥ ≤ 1+ ε for every u ∈ A, n ∈ N and i ∈ {1, . . . ,mn}. It
is clear that

∥u+ x⊗ y∥ ≤
∥∥∥mn∑
i=1

λu,n
i (xu,ni ⊗ yu,ni + x⊗ y)

∥∥∥+ 1/n

≤
mn∑
i=1

λu,n
i ∥xu,ni ⊗ yu,ni + x⊗ y∥+ 1/n

≤ (1 + ε)

mn∑
i=1

λu,n
i + 1/n = 1 + ε+ 1/n

for every u ∈ A and n ∈ N. In other words, ∥x ⊗ y + u∥ ≤ 1 + ε for every
u ∈ A, and the proof is finished.

Remark 4.5. In general, we cannot prove that a projective tensor prod-
uct X ⊗̂π Y is ASQ<κ if we only require one factor to be ASQ<κ. Indeed, if
we take X = c0(κ) and Y = ℓp for 2 < p < ∞, we find, from [22, Theorem
3.8], that X ⊗̂π Y fails to be ASQ (it even contains a convex combination of
slices of diameter smaller than 2).

Now we turn our attention to when a space of operators can be transfinite
ASQ, a study that will cover the injective tensor product too. Let X and Y
be Banach spaces. Given an infinite cardinal κ, denote

Lκ(Y,X) := {T ∈ L(Y,X) : dens(T (Y )) ≤ κ}.
Using the ideas in [21, Theorem 2.6], we get the following.

Proposition 4.6. Let λ < κ be infinite cardinals, and X and Y be
non-trivial Banach spaces. Suppose that X is (A)SQ<κ.

(a) If H ⊂ Lλ(Y,X) is a closed subspace such that Y ∗ ⊗X ⊂ H, then H is
(A)SQ<κ.

(b) If H ⊂ Lλ(Y
∗, X) is a closed subspace such that Y ⊗X ⊂ H, then H is

(A)SQ<κ.

Proof. We prove only (a) in the ASQ case. Fix T ∈ P<κ(SH) and ε > 0.
Consider the subspace

T (Y ) :=
⋃
T∈T

T (Y )

and notice that dens(T (Y )) ≤ |T | · λ < κ. By assumption, there exists
x ∈ SX satisfying

∥z + rx∥ ≤ (1 + ε)(∥z∥ ∨ |r|) for every z ∈ T (Y ) and r ∈ R.

Fix any y∗ ∈ SY ∗ . Then the element y∗ ⊗ x ∈ SH satisfies, for every T ∈ T
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and y ∈ SY ,

∥(T + y∗ ⊗ x)(y)∥ = ∥T (y) + y∗(y) · x∥ ≤ (1 + ε)(∥T (y)∥ ∨ |y∗(y)|) ≤ 1 + ε.

If we pass to the sup on the left-hand side, we conclude that ∥T + y∗ ⊗ x∥
≤ 1 + ε for every T ∈ T , as desired.

Recall that, given two Banach spaces X and Y , the injective tensor prod-
uct of X and Y , denoted by X ⊗̂ε Y , is the closure (in the operator norm
topology) of the space of finite-rank operators from Y ∗ to X. Taking this into
account, the following corollary is clear from Proposition 4.6. This should be
compared with [21, Corollary 2.8].

Corollary 4.7. Let κ be an uncountable cardinal, and X and Y be
non-trivial Banach spaces. If X is (A)SQ<κ, then X ⊗̂ε Y is (A)SQ<κ.

4.3. Ultrapowers. In this subsection we will provide examples of ultra-
powers of Banach spaces which are transfinite ASQ. Our motivation comes
from [17], where it is proved that, in our language, the ultrapower of a Ba-
nach space X is SQ<ℵ0

if, and only if, X is ASQ.
Let us start with a bit of notation. Given a family {Xα : α ∈ A} of

Banach spaces for an infinite set A, and given a non-principal ultrafilter U
over A, consider c0,U (A, Xα) := {f ∈ ℓ∞(A, Xα) : limU ∥f(α)∥ = 0}. The
ultrapower of {Xα : α ∈ A} with respect to U is the Banach space

(Xα)U := ℓ∞(A, Xα)/c0,U (A, Xα).

We will naturally identify a bounded function f : A →
∏

α∈AXα with the
element (f(α))α∈A. In this way, we denote by (xα)α,U or simply by (xα)U , if
no confusion is possible, the coset in (Xα)U given by (xα)α∈A+c0,U (A, (Xα)).

From the definition of the quotient norm, it is not difficult to prove that
∥(xα)U∥ = limU ∥xα∥ for every (xα)U ∈ (Xα)U . We refer the reader to [19]
for background about ultraproducts.

Now we are ready to prove the following result.

Proposition 4.8. Let A be an infinite set and {Xα : α ∈ A} a family
of ASQ<κ spaces. If U is an ℵ1-incomplete non-principal ultrafilter over A,
then (Xα)U is SQ<κ.

Proof. Since U is ℵ1-incomplete, we can find a function f : A → R such
that f(α) > 0 for every α ∈ A and so that limU f(α) = 0.

Let us now prove that (Xα)U is SQ<κ. To this end, fix a set A ∈
P<κ(S(Xα)U ). Without loss of generality we can assume that ∥x(α)∥ = 1
for every α ∈ A and every x ∈ A. Now, since Xα is ASQ<κ, we can find, for
every α ∈ A, an element yα ∈ SXα such that

∥x(α) + yα∥ ≤ 1 + f(α) for every x ∈ A.
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Now consider (yα)U ∈ S(Xα)U ; we prove that it satisfies the desired in-
equality. To this end fix x ∈ A and notice that

∥x+ (yα)U∥ = lim
U

∥x(α) + yα∥ ≤ lim
U
(1 + f(α)) = 1,

as required.

It is natural, in view of what happens with the behaviour of ASQ in
ultrapowers, to ask whether (Xα)U ASQ implies Xα ASQ for some α ∈ A.
The following example shows that the answer is no.

Example 4.9. Let κ be an infinite cardinal and set Xn := ℓn(κ), where
n ∈ N≥2. Let U be a non-principal ultrafilter over N and consider X :=
(Xn)U . Let us prove that X is SQ<κ in spite of Xn being reflexive for every
n ∈ N≥2. Fix A ∈ P<κ(SX) and assume that x(n) has norm 1 for each x ∈ A
and n ∈ N≥2.

By the same argument as in Example 3.1 we get elements yn ∈ SXn such
that ∥x(n) + yn∥ ≤ 21/n for every x ∈ A and n ∈ N≥2. It is not difficult to
show, as before, that

∥x+ (yn)U∥ = lim
U

∥x(n) + yn∥ ≤ lim
U

21/n = 1 for every x ∈ A,

and the proof is finished.

5. Connections with other properties. It is known that almost
square Banach spaces have deep connections with other properties of the
geometry of Banach spaces such as diameter 2 properties, octahedrality and
the intersection property (see [2]). The aim of the present section is to de-
rive similar connections with transfinite counterparts of the above-mentioned
properties.

We will be specially interested in the connection between transfinite ver-
sions of almost squareness and octahedrality, because, as a consequence of
our work, we will solve an open question from [9]. In order to do so, let us
start with the following definition from [9].

Definition 5.1 (see [9, Definitions 2.3 and 5.3]). Let X be a Banach
space and κ an uncountable cardinal.

(a) We say that X is <κ-octahedral if, for every subspace Y ⊂ X with
dens(Y ) < κ and ε > 0, there exists x ∈ SX such that for all r ∈ R and
y ∈ Y we have ∥y + rx∥ ≥ (1− ε)(∥y∥+ |r|).

(b) We say that X fails the (−1)-BCP<κ if, for every subspace Y ⊂ X with
dens(Y ) < κ, there exists x ∈ SX such that for all r ∈ R and y ∈ Y we
have ∥y + rx∥ = ∥y∥+ |r|.

If κ = ℵ0, analogous properties are defined by considering finite-dimensional
subspaces Y ⊂ X instead.
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It is known that if a Banach space X is ASQ, then X∗ is octahedral [2,
Proposition 2.5]. In order to solve the above-mentioned open question, our
aim will be to establish a transfinite version of this result. We will perform
this proof, however, from a more general principle using transfinite versions
of the strong diameter 2 property.

Definition 5.2 (see [10, Definitions 2.11 and 2.12]). Let X be a Banach
space and κ an infinite cardinal.

(a) We say that X has the SD2P<κ if, for every A ∈ P<κ(SX∗) and ε > 0,
there exist B ⊂ SX and x∗ ∈ SX∗ such that x∗(x) ≥ 1− ε for all x ∈ B
and B (1− ε)-norms A, that is,∨

x∈B
y∗(x) ≥ 1− ε for every y∗ ∈ A.

(b) We say that X has the 1-ASD2P<κ if, for every A ∈ P<κ(SX∗), there
exist B ⊂ SX and x∗ ∈ SX∗ such that x∗(x) = 1 for all x ∈ B and B is
norming for A, that is, B 1-norms A.

Recall that, for any infinite cardinal κ, a Banach space X has the SD2P<κ

if, and only if, X∗ is <κ-octahedral, and that if X has the 1-ASD2P<κ, then
X∗ fails the (−1)-BCP<κ [10, Theorem 3.2 and Proposition 3.6].

It turns out that if a Banach space is transfinite almost square, then it
actually satisfies a transfinite version of the symmetric strong diameter 2
property [3, 16].

Definition 5.3. Let X be a Banach space and κ an infinite cardinal.

(a) We say that X has the SSD2P<κ if, for every A ∈ P<κ(SX∗) and ε > 0,
there exist B ⊂ SX and y ∈ SX such that B (1 − ε)-norms A and
y ±B ⊂ (1 + ε)BX .

(b) We say that X has the 1-ASSD2P<κ if, for every A ∈ P<κ(SX∗), there
exist B ⊂ SX and y ∈ SX such that B 1-norms A and y ±B ⊂ BX .

From the definitions, it is clear that a Banach space has the SSD2P<κ

(respectively, 1-ASSD2P<κ) whenever it is ASQ<κ (respectively, SQ<κ).

Proposition 5.4. Let X be a Banach space and κ an infinite cardinal. If
X has the SSD2P<κ, then X has the SD2P<κ. Moreover, if κ is uncountable
and X has the 1-ASSD2P<κ, then X has the 1-ASD2P<κ.

Proof. We begin by proving that X has the SD2P<κ. For this purpose,
fix A ∈ P<κ(SX∗) and ε > 0. Find B ⊂ SX and y ∈ SX such that B
(1− ε/3)-norms A and y ±B ⊂ (1 + ε/3)BX .

We claim that y + B also (1− ε)-norms A. In fact, for every x∗ ∈ A we
can find x ∈ B such that x∗(x) ≥ 1− ε/3 and therefore
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1 = ∥x∗∥ ≥ x∗(x± y)

1 + ε/3
≥ 1− ε/3± x∗(y)

1 + ε/3
,

hence |x∗(y)| ≤ 2ε/3. We conclude that x∗(x+ y) ≥ 1− ε, and so the claim
is proved.

In order to conclude, we need to find x∗ ∈ SX∗ such that x∗(x+y) ≥ 1−ε
for every x ∈ A. Any x∗ ∈ SX∗ that attains its norm at y satisfies the desired
condition: in fact, for every x ∈ A, we have

1 = ∥x∗∥ ≥ x∗(y ± x)

1 + ε/3
=

1± x∗(x)

1 + ε/3
,

hence |x∗(x)| ≤ ε/3 and therefore x∗(x+ y) ≥ 1− ε/3.
The “moreover” part follows by repeating the same proof with ε = 0 and

taking into account that, given any element x∗ ∈ SX∗ , the set {x∗} can be
normed using a countable set.

Remark 5.5. In [9, Question 1] it was asked whether every <κ-octahed-
ral Banach space must contain an isomorphic copy of ℓ1(κ). Observe that,
by Proposition 5.4, the dual of the space exhibited in Example 3.1 provides
a negative answer for every infinite cardinal κ.

6. Parametric ASQ spaces. In this last section we study a further
generalisation of ASQ spaces.

Definition 6.1. Let X be a Banach space, κ be a cardinal, and r, s ∈
(0, 1]. We say that X is (r, s)-SQ<κ if, for every set A ∈ P<κ(SX), there
exists y ∈ SX satisfying

∥rx± sy∥ ≤ 1 for every x ∈ A.

We say that X is (<r, s)-SQ<κ if it is (t, s)-SQ<κ for all t ∈ (0, r), and similar
meaning is given to being (r,<s)-SQ<κ. As before, we put “κ” instead of
“< κ” in the definitions above to mean non-strict inequality on the cardinals.

It is clear that being ASQ<κ coincides with being (<1, <1)-SQ<κ, and
that being SQ<κ corresponds to being (1, 1)-SQ<κ.

Remark 6.2. The quantitative version of almost squareness studied in
[24], named s-ASQ, corresponds to the space being (<1, <s)-SQ<ℵ0

, where
s ∈ (0, 1].

Before proceeding, let us prove that every (r, s)-SQ<κ space can be de-
scribed through subspaces of density character < κ.

Lemma 6.3. Let X be a Banach space, x, y ∈ SX and r, s ∈ (0, 1]. If
∥rx+ sy∥ ≤ 1, then ∥r′x+ s′y∥ ≤ 1 for every r′ ∈ (0, r] and s′ ∈ (0, s].
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Proof. Suppose without loss of generality that s/s′ ≤ r/r′ and notice
first that

∥r′x+ sy∥ =
r′

r

∥∥∥∥rx+
rs

r′
y

∥∥∥∥ ≤ r′

r

(
∥rx+ sy∥+ s

(
r

r′
− 1

))
≤ r′

r
+ s

(
1− r′

r

)
≤ 1.

We have just proved that ∥r′x + sy∥ ≤ 1 for every r′ ∈ (0, r]. We can now
conclude the proof since

∥r′x+ s′y∥ =
s′

s

∥∥∥∥r′ss′ x+ sy

∥∥∥∥ ≤ s′

s
≤ 1,

where we have used the first part of the proof together with the fact that
r′s/s′ ≤ r.

Notice that, thanks to Lemma 6.3, we can conclude that (r, s)-SQ<κ

implies (r′, s′)-SQ<κ whenever r′ ≤ r and s′ ≤ s.

Theorem 6.4. Let X be a Banach space, κ an uncountable cardinal and
r, s ∈ (0, 1]. Then X is (r, s)-SQ<κ if, and only if, for every subspace Y ⊂ X
with dens(Y ) < κ, there exists x ∈ SX satisfying

∥ry + stx∥ ≤ ∥y∥ ∨ |t| for all y ∈ Y and t ∈ R.

Proof. One implication is obvious. For the converse, we only need to
prove the claim when t ≥ 0. For this purpose, fix a subspace Y ⊂ X with
dens(Y ) < κ and find x ∈ SX such that

∥ry + sx∥ ≤ 1 for every y ∈ SY ;

such an x exists by a density argument. Fix t ≥ 0, y ∈ Y and notice that,
thanks to Lemma 6.3,

∥ry + stx∥ = (∥y∥ ∨ t)

∥∥∥∥ r∥y∥
∥y∥ ∨ t

y

∥y∥
+

st

∥y∥ ∨ t
x

∥∥∥∥ ≤ ∥y∥ ∨ t.

Now, let us point out some geometrical considerations.

Lemma 6.5. Let X be a Banach space.

(a) If X is (1, <1)-SQ<ℵ0
(or just (1, k)-SQ1 for some k ∈ (0, 1]), then BX

cannot contain any extreme point.
(b) If X is (<1, 1)-SQ<ℵ0

(or just (k, 1)-SQ1 for some k ∈ (0, 1]), then X is
not strictly convex.

Proof. (a) Let x ∈ SX . By our assumption we can find y ∈ BX \{0} such
that ∥x± y∥ ≤ 1. Notice that

x =
x+ y

2
+

x− y

2
.
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Thus x is a middle point of two distinct elements of BX and cannot be an
extreme point.

(b) Let x ∈ kBX \ {0}. By our assumption we can find y ∈ SX such that
∥x± y∥ ≤ 1. Observe that

1 = ∥y∥ =

∥∥∥∥y + x

2
+

y − x

2

∥∥∥∥.
From this we deduce, by a simple contradiction argument, that ∥x± y∥ = 1
and that y is a norm-1 element which is a middle point of two distinct norm-1
elements, thus proving the claim.

Let us state a simple but useful observation about how (r, s)-SQ<κ prop-
erties pass from a component to the ∞-sum.

Proposition 6.6. Let X and Y be non-trivial Banach spaces, r, s ∈
(0, 1], and let κ be a cardinal. If X is (r, s)-SQ<κ, then X⊕∞Y is (r, s)-SQ<κ.

Proof. Fix a set {xγ ⊕∞ yγ}γ∈Γ ⊂ SX⊕∞Y with |Γ | < κ. Find z ∈ SX

such that ∥rxγ/∥xγ∥ ± sz∥ ≤ 1 for all xγ ̸= 0. By Lemma 6.3 we have
∥rxγ + sz∥ ≤ 1 (even when xγ = 0), so that ∥r(xγ ⊕∞ yγ) + s(z ⊕∞ 0)∥ ≤ 1
for all γ ∈ Γ .

Wer now give some first easy examples.

Example 6.7. It is easy to check that c0 is (1, <1)-SQ<ℵ0
. In fact, for

all x1, . . . , xn ∈ Sc0 and ε > 0 we can find m ∈ N such that |xi(m)| ≤ ε for
i ∈ {1, . . . , n} and it is clear that ∥xi + (1− ε)em∥ ≤ 1.

Even more is true: given any sequence {Xn : n ∈ N} of Banach spaces,
c0(N, Xn) is (1, < 1)-SQ<ℵ0

. On the other hand, it is trivial to verify that c0
is not SQ<ℵ0

by considering the element x =
∑∞

n=1 n
−1en ∈ Sc0 .

Following the same ideas as in [3, Theorem 2.5], the previous argument
can be exploited also to prove more generally that somewhat regular sub-
spaces of C0(X) spaces, where X is some non-compact locally compact and
Hausdorff space, are (1, <1)-SQ<ℵ0

.
With similar ideas we can slightly improve the renorming result stated

in [8, Theorem 2.3].

Theorem 6.8. A Banach space X contains an isomorphic copy of c0 if,
and only if, it admits an equivalent (1, <1)-SQ<ℵ0

norm.

Proof. Assume that X contains a subspace isometric to c0. Then there
is a subspace Z of X∗∗ such that X∗∗ = ℓ∞ ⊕ Z. Consider the norm ||| · |||
on ℓ∞ described in Example 2.4. Now, consider on X∗∗ the equivalent norm
||| · |||′ such that (X∗∗, ||| · |||′) = (ℓ∞, ||| · |||)⊕∞ Z. By Corollary 4.2, (X∗∗, ||| · |||′)
is SQ<ℵ0

because (ℓ∞, ||| · |||) is SQ<ℵ0
.
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Now let x1 = (u1, z1), . . . , xk = (uk, zk) ∈ SX and ε > 0. Keeping in
mind the notation from Example 2.4, find n ∈ N such that 1/n < ε and
define y := (1− ε)em ∈ Bc0 , where m ∈ An. Then a similar calculation to [8,
proof of Theorem 2.3] shows that (y, 0) ∈ (1 − ε)BX and ∥xi + (y, 0)∥ ≤ 1
for every i ∈ {1, . . . , k}. Hence, X is (1, <1)-SQ<ℵ0

.
For the converse recall that every Banach space with (1, <1)-SQ<ℵ0

norm
is ASQ and every ASQ space is known to contain c0 by [2].

If κ is an infinite cardinal and a Banach space X is (1, <1)-SQ<κ, then
a simple transfinite induction proves that X contains an isomorphic copy of
c0(κ). Thus, in the case when κ is uncountable, the condition (1, <1)-SQ<κ

is different from ASQ<κ due to Example 3.1.
To give more examples, let us first prove a variation of Theorem 4.1 that

we will need.

Theorem 6.9. Let {Xα : α ∈ A} be a family of Banach spaces and κ an
infinite cardinal. If for every r ∈ (0, 1) there are infinitely many α ∈ A such
that Xα is (r, r)-SQ<κ, then ℓ∞(A, Xα) is (<1, 1)-SQ<κ.

Proof. Fix r ∈ (0, 1) and A ∈ P<κ(Sℓ∞(A,Xα)). For every s ∈ (r, 1) we
can find α(s) ∈ A and ys ∈ SXα(s)

satisfying

∥sx(α(s)) + sys∥ ≤ 1 for all x ∈ A.

By our hypothesis, we can assume that, if s ̸= s′, then α(s) ̸= α(s′). Define
y ∈ Sℓ∞(A,Xα) by

y(α) :=

{
sys if α = α(s) for some s ∈ (r, 1),

0 otherwise.

Thanks to Lemma 6.3, we conclude that

∥rx+ y∥∞ = 1 ∨
∨

s∈(r,1)

∥rx(α(s)) + sys∥ ≤ 1 for every x ∈ A.

Eventually we can present more examples of (r, s)-SQ<κ spaces that
will also show that these properties are actually distinct from the regular
(A)SQ<κ.

Example 6.10. There exists a Banach space X which is M -embedded
and strictly convex [18, p. 168]. Therefore X is ASQ [2, Corollary 4.3], but
it is neither (1, <1)-SQ<ℵ0

nor (<1, 1)-SQ<ℵ0
, by Lemma 6.5.

Example 6.11. In the proof of Example 3.1, it is shown that the Banach
space ℓn(κ) is (2−1/n, 2−1/n)-SQ<κ. Thus, X := ℓ∞(ℓn(κ)) is (<1, 1)-SQ<κ,
thanks to Theorem 6.9, but it is not (1, <1)-SQ<ℵ0

, by Lemma 6.5, since it
is a dual space.
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